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Abstract

This paper! describes an algorithm for inferring
inheritance hierarchies. It is simple both to under-
stand and to implement. It is also efficient enough
for use with realistically sized problems. The so-
lutions produced meet a set of criteria, which are
justified as producing the inheritance hierarchy
which most clearly reflects the inherent structure
of the objects to which it is applied. The moti-
vation for such an algorithm is discussed, and a
comparison is made with two similarly motivated
algorithms. An example of an application using
the algorithm is presented.

1 Introduction

Inheritance is one of the defining characteristics
of object oriented programming. It allows pro-
grams to capture the shared characteristics of ob-
jects, at different levels of abstraction. For exam-
ple, the object 3 is not only an integer but also
a number, hence shares abstract behaviour with
other numbers, and shares more specific behaviour
with other integers. The structure of the inher-
itance hierarchy reflects the abstractions shared
between objects, by sharing behaviour (methods),
structure (instance variable structure) and data
(class variables). (Some object-oriented program-
ming languages do not share all of these differ-
ent kinds of features using inheritance.) In this
paper methods, structural information and data
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will be called features. Using inheritance to share
features makes initial definition and subsequent
maintenance of a system easier.

However, designing inheritance hierarchies is
hard, precisely because it requires the identifica-
tion of appropriate abstractions. Texts on object
oriented design such as [Meyer 88] provide guide-
lines, but it remains an art rather than a science.
Even if the initial hierarchy is well designed, subse-
quent extensions and modifications may turn out
to be best handled by a radical rearrangement
of the hierarchy, and this seldom happens. Even
in the basic libraries of object oriented languages
there is often scope for improvement.

An alternative approach to constructing a hi-
erarchy by hand is to infer one from the features
of the objects that a program creates. (Where
objects are created as instances of certain, con-
crete classes, the features of these classes should
be considered. Where they are created as copies
of other objects, only a set of prototype objects
need to be considered. Where there is an existing
hierarchy, this can be “flattened” to determine the
sets of features that objects contain, as explained
in [Moore 95].) This paper will describe an algo-
rithm (the inheritance hierarchy inference (IHI)
algorithm) which infers an inheritance hierarchy
from a set of objects and their features. An exam-
ple of its action is shown below: from the objects
of Figure 1 it will infer the hierarchy of Figure 2.
The arrows represent inheritance of features from
a parent in the hierarchy, and throughout this pa-
per the direction of the arrows is from parents to



their children, rather than the more conventional
direction from children to their parents, in order
to simplify the description of the algorithm. In the
inferred hierarchy, object A defines feature f3 for
itself, inherits feature f2 from its immediate parent
and inherits feature fl from its parent’s parent.

B Cc
f4 1
f2 ” 5

Object ‘A’ has
features ‘f1’, ‘2", 3’

A
fl
f2 f3

Figure 1: A collection of objects with their
features

Figure 2: The inferred inheritance hierarchy

In general, the algorithm may construct hierar-
chies with multiple inheritance, in which case the
diagram will be a graph rather than a tree.

Different definitions of what is meant by a ‘fea-
ture’, and the equality of features, can be used
in the algorithm for different results. If fea-
tures are methods defined only by name, then
the result will be a hierarchy of messages under-
stood, which is used as the meaning of ‘type’ by
some users of dynamically typed languages. Al-
ternatively, for inferring a ‘type hierarchy’ for a
strongly typed language, features could be de-
fined by their name and their type. This def-
inition of features has been used in the imple-
mentation of a design tool[Pun 90]. The IHI al-
gorithm has been used in the implementation of
a re-engineering tool[Moore 95] for the dynami-
cally typed language Self[Ungar 87]; defining fea-
tures by their name and their ‘meaning’, where
the meaning of a method is a parsed version of
it. For re-engineering a statically typed language,

method features would also have to include the
types of arguments and return values.

2 Criteria for an inferred inher-
itance hierarchy

A system is defined by its objects and their fea-
tures; the inferred hierarchy must preserve the fea-
tures of objects, so each original object must have
a corresponding node in the hierarchy which inher-
its or defines exactly the set of features that the
original defines. The structure of nodes above the
objects (which correspond to abstract classes in a
class based language) and their inheritance links,
being new, can take any form, so many hierarchies
will satisfy this correctness condition, including
the one which leaves the objects unchanged. Fur-
ther criteria must be met if the hierarchy is to be a
representation of a structure that might naturally
be inferred from the objects.

The first of these is that there should be as much
sharing of features as possible. That is, every fea-
ture should be introduced at exactly one node in
the hierarchy. (It must appear at least once if it
appears in any of the objects to meet the correct-
ness condition.) The motivation for this criterion
is the motivation for having inheritance in the lan-
guage in the first place: it makes a system more
compact, and easier to maintain. It is used else-
where [Pun 89] as the sole criterion for construct-
ing a hierarchy. It is desirable to keep the hierar-
chy as simple as possible, so that its structure can
be more readily understood.

The second criterion is that the fewest possible
internal nodes (referred to as classes below) should
be used in the hierarchy. This will mean fewer in-
dividual definitions to be understood. Since for
correctness every feature must appear in some
class or object and no feature can appear in a class
that will be inherited from by an object that does
not contain it, classes will contain more than one
feature if and only if that combination of features
is always found together in the objects.

The third and fourth criteria characterise the
inheritance links. The third is that all inheri-
tance that is consistent with the objects should
be present in the hierarchy. Thus if the set of ob-
jects which inherits from some class C also inherits
from class D, then C should itself inherit (directly
or indirectly) from class D. As a consequence, we



prefer the hierarchy of Figure 3 to that of Figure
4.

Figure 3: Hierarchy with all inheritance
consistent with the objects

Figure 4: Hierarchy which does not satisfy the
third criterion

The motivation is that if the class of objects
containing the features of class C (f3 in the exam-
ple) is really not a subclass of D (those containing
f1), a representative selection of objects should in-
clude at least one where f3 does not occur with 1
just as there are objects where fl occurs without
3. If the objects are not representative, then there
is no reason to believe anything about the hierar-
chy inferred.

The fourth criterion applies the general require-
ment for simplicity to the links: links which are
implied by the transitivity of inheritance should
not be made explicit. This is equivalent to re-
quiring the minimum number of inheritance links
necessary to satisfy the other criteria. To make
the implied links explicit only makes the defini-
tions of the objects and classes more complex and

sends the readers of the code to look immediately
at classes that they will encounter eventually any-
way.

A final criterion is that the original objects
should correspond to leaves of the final inheri-
tance hierarchy. In class based languages, this cor-
responds to inheritance being only from abstract
classes, a criterion for hierarchy design suggested
in [Johnson 88]. This is seen as less important
than the other criteria, and may be relaxed to al-
low objects as internal nodes, by a small modifi-
cation to the algorithm. The five criteria together
are sufficient to uniquely define the hierarchy in-
ferred from any set of objects (see Appendix B for
a brief justification).

3 The IHI algorithm

The simplest way to describe the algorithm is
through an example. It will be presented us-
ing graphs with three types of vertex, called
FeatureVertices, ObjectVertices and ClassVer-
tices, and two types of edges, InheritanceEdges
and FeatureEdges. ObjectVertices represent the
objects for which an inheritance hierarchy is
to be inferred. FeatureVertices represent fea-
tures and FeatureFEdges show the ObjectVertices
or ClassVertices in which a feature is defined.
ClassVertices represent the inferred classes, and
InheritanceFEdges represent the inferred inheri-
tance links. Graphs are used to explain the al-
gorithm because they provide an implementation
independent representation which is easy to un-
derstand. Also, although there is not a direct cor-
respondence with the graph representations used
in previous work [Lieberherr 91, Hoeck 93] there
are similarities which make comparison easier.

Consider the objects in Figure 5, shown with
their features inside them.

ol 02 03 04 05
ml, m2, m5 ml, m2, mé ml, m3, m4 ml, m3, m4 m4, m8
m7, m9 m7, m8, m10

Figure 5: Example problem objects

The first step of the algorithm creates a bipar-
tite graph with a unique FeatureVertex for each
feature, and FeatureEdges to the objects they ap-
pear in. For the example, this would produce the



graph shown in Figure 6. If each FeatureVertex
were used to define a class and each FeatureFdge
were used to define an inheritance link, then ob-
jects would inherit all the necessary features and
this graph would satisfy the criterion that no fea-
ture is duplicated. However, sets of features which
are shared by the same sets of objects (such as m3
and m7) are not grouped together, so there may
be more classes than necessary and the second cri-
terion is not satisfied.

| ObjectVertex |:| FeatureVertex

——~ FeatureEdge

Figure 6: Initial grouping graph

To minimise the number of classes in the hierar-
chy, ClassVertices are introduced. The next step
of the algorithm creates a ClassVertex for each set
of ObjectVertices connected to a FeatureVertex in
the initial graph, and labels it with that set. (If
more than one FeatureVertex has the same set of
objects, this is done only once.) The FeatureEdges
from the FeatureVertices to their objects are then
replaced by a single FeatureEdge to the ClassVer-
tex with those objects as its label. The effect on
the example is shown in Figure 7.

This graph now represents all the new nodes
that will appear in the inferred hierarchy and
the features that they will have. It is called the
mapping graph. By construction, the ClassVer-
tices and ObjectVertices partition the features
amongst themselves (each FeatureVertex has ex-
actly one FeatureEdge) so there will be no duplica-
tion in any resulting hierarchy. The label of every
ClassVertex identifies exactly the set of objects

B ClassVertex |:| FeatureVertex

! Objectvertex —— FeatureEdge

01, 02,
03,04

Figure 7: Mapping graph with Featureldges and
FeatureVertices

containing the features given by the FeatureEdges
and no two ClassVertices have the same label
so the number of classes is as small as possible.
The mapping graph is useful in its own right be-
cause it shows what inherent classifications exist,
and what objects belong to those classifications.
However, the InheritanceEdges remain to be con-
structed. This will be done in two steps. First,
enough InheritanceEdges will be added to make
sure that objects will inherit the features necessary
without inheriting inappropriate features. Then,
InheritanceEdges which are not needed, due to
transitivity, will be removed. To simplify the fol-
lowing figures, FeatureFdges and FeatureVertices
will be shown as just the FeatureVertex labels in-
side the appropriate ClassVertex or Object Vertex,
as in Figure 8, which represents the same mapping
graph as Figure 7.

01, 02, 03, 04 03, 04, 05
ml m4
ol, 02 03, 04 04, 05
m2 m3, m7 m8
ol i 02 i 03 i i Y o5
m5 m6 m9 m10

Figure 8: The mapping graph as labelled nodes

The inheritance edges which may be needed in
the hierarchy are those connecting each ClassVer-
tex (let its label be the set os) to every other



ClassVertex with a subset of os as its label, and
to every object that appears in os. (If we con-
sider the labels alone, then, the resulting graph is
a subgraph of the subset inclusion lattice.) For ex-
ample, an InheritanceEdge should be added from
‘ol, 02, 03, 04’ to ‘ol, 02’ because ‘ol, 02’ is a
proper subset of ‘o0l, 02, 03, 04’. The edges from
ClassVertices to ObjectVertices are enough to en-
sure that each object inherits the features it needs
(as Figure 9 shows) but gives only a two level in-
heritance hierarchy. The complete set of edges
gives the hierarchy shown in Figure 10, and satis-
fies the third criterion by construction, but clearly
does not satisfy the fourth criterion.

Figure 9: Inheritance graph with class-object
links only

Figure 10: Inheritance graph with all edges from
third step

In order to remove InheritanceEdges which are
unnecessary due to transitivity; for each ClassVer-
tex PV and all ClassVertices CV with an In-
heritanceEdge (that exists before any edges are
removed) from PV, remove all InheritanceEdges
from PV to all vertices (both ClassVertices and
ObjectVertices) which have an InheritanceEdge
from CV. For example, the ClassVertex labelled
(03, o4, 05) has InheritanceEdges to (03, o4),

(04,05), (05), (04) and (03). ClassVertex (03, o4)
has InheritanceEdges to (04) and (03), therefore,
InheritanceEdges from (03, o4, 05) to (o4) and
(03) are removed. Similarly, the InheritanceEdge
from (03, 04, 05) to (05) is removed because (o4,
05) has an InheritanceEdge to (05). The resulting
graph will now represent the inferred inheritance
hierarchy as objects and their immediate children,
as shown in Figure 11.

ol, 02, 03, 04 03, 04, 05
ml m4

03, 04 04, 05
m3, m7 m8
o1} 02 fo3 1 o4 iofes
m5 m6 m9 m10 : :

Figure 11: Inferred inheritance hierarchy

The time complexity of this algorithm is O(0?),
where o is the number of objects, or somewhat
better: a further discussion is in Appendix A.

4 Comparison with previous

work

There have been other investigations of automatic
inheritance hierarchy construction from object de-
scriptions, producing hierarchies which satisfy dif-
ferent criteria.

Those constructed by Pun and Winder [Pun 89]
satisfy our first criterion, but are not guaran-
teed to satisfy the other criteria used in this pa-
Furthermore, they favour multiple inheri-
tance over single inheritance. The stronger cri-
teria used here, which have been justified on gen-
eral grounds, seem to lead to better hierarchies.
An example taken from [Pun 90] shows the dif-
ference between the results of their algorithm and
the results of the THI algorithm. The objects in
this example are defined as shown in Figure 12.
Their algorithm produces the hierarchy in Figure
13, while the THI algorithm produces the hierar-
chy shown in Figure 14.

per.



o4
ao, ai, a2,
a4, a5

a0, al, a5,
a7, a8

ao, a2, a4,
a6

ol

02

o3

al, a2, a3

Figure 12: An example from [Pun 90]

‘0“1“2‘
‘as“m‘
ol 02 03 04
a7, a8 ‘ ‘ a6 ‘ a3

Figure 14: Hierarchy produced by the THI
algorithm

Their algorithm involves iteratively factoring-
out the feature that is repeated most often, until
no more factoring can be done.

Lieberherr et al [Lieberherr 91] adopt the first
two optimality criteria used here, but replace the
other criteria with a requirement that the number
of inheritance links should be minimised. This
clearly subsumes the fourth criterion, but gives
different results from our third one. For example,
while the third criterion here will give the hier-
archy shown in Figure 15 the minimality require-
ment forces one of the top edges to be removed,
leaving a hierarchy like that of Figure 16. (Any
other top edge could be removed instead.) This
reduces the amount of inheritance, which is gen-
erally desirable, but at the expense of an arbitrary
decision which does not reflect the structure inher-
ent in the objects.

Figure 15: Hierarchy produced by the THI
algorithm

Figure 16: Hierarchy satisfying minimal
inheritance criterion

The first part of Lieberherr’s algorithm pro-
duces a graph in what he calls Common Normal
Form, which is equivalent to the mapping graph
produced in the THI algorithm. The construc-
tion of the inheritance hierarchy from the Com-
mon Normal Form graph involves the equivalent
of examining pairs of vertices for every combina-
tion of the outgoing InheritanceFEdges of each of
the ClassVertices, and modifying the graph for one
pair of vertices at a time, until no more modifica-
tions can be made. Despite its greater complex-
ity, it does not guarantee to satisfy their criteria
or ours: a reason for this will be discussed in Ap-
pendix A.

If minimising the number of edges is held to be
important, the THI algorithm can be extended to
meet the criterion by adding a new final step. The
label of a ClassVertex is given by the set of objects
which inherit from the class. This must be equal



to the union of the labels of its children, since the
inheritance passes through them, but their labels
will not necessarily be disjoint (due to multiple
inheritance paths). The new step considers every
ClassVertex CV, to find the smallest set S which
has the union of the labels of S equal to the label
of CV. This is not necessarily unique, as Figures
15 and 16 show. The Inheritanceldges from CV
to the children not in S are then deleted. The
result is a hierarchy where the features inherited
by each object are unaffected, but the number of
InheritanceEdges is minimised.

Casais[Casais 92] describes an incremental ap-
proach to restructuring (rather than creating) in-
heritance hierarchies, which uncovers design flaws
when new classes are added to an existing inheri-
tance hierarchy. An inheritance hierarchy is re-
structured when a class is added which has no
class from which it can inherit the features that
it requires without inheriting unwanted features,
which have to be ezplicitly rejected. The algorithm
removes explicitly rejected features from a hierar-
chy by creating new abstract classes and moving
features ‘up’ the inheritance hierarchy into these
new classes.

Problems similar to inferring inheritance hier-
archies appear in several areas of research, in
particular conceptual clustering [Fisher 87] and
data mining [Holsheimer 94]. Note that the in-
heritance hierarchy structure is only one aspect
of the design of an object-oriented system, and
other work ([Casais 90, Hoeck 93, Opdyke 92] as
well as parts of [Lieberherr 91]) has investigated
(semi) automatic restructuring of object-oriented
systems with regard to other aspects of design.

5 Application of the THI algo-
rithm

The THI algorithm has been used in the implemen-
tation of a re-engineering tool for Self[Ungar 87],
called Guru[Moore 95]. This tool can automat-
ically restructure a Self inheritance hierarchy
whilst preserving the behaviour of its objects. An
evaluation of the application of Guru has been pre-
sented in [Moore 95]. It was applied to part of the
collection hierarchy in the standard Self image,
shown in figure 17, which was restructured with
a small amount of user intervention into the hier-
archy shown in figure 18. In the restructured hier-

archy, 34 fewer methods redefined inherited meth-
ods. Furthermore, 8 redundant methods were re-
moved, but 8 disambiguating methods were added
due to the multiple inheritance introduced into the
hierarchy. Inheritance from the Self equivalent of
concrete classes was eliminated.

traits collection

Objects included in the restructuring traits indexable(26)

traits mutablelndexable(18)

traits
sequence(38)

traits
vector(11)

traits

traits sending(33) byteVector(30)

traits
sortedSequence(38)

traits string(90)
raits

traits
immutableString(6) mutableString(6)
traits canonicalString(6)

canonicalString mutableString byteVector vector sequence sortedSequence
0 (09 ©) ) 49 (5%
Numbers shown in brackets after the object's name are the number of slots
defined by the object.

* indicates that a slot was removed manually due to a problem caused by
reflection

Figure 17: Collection objects inheritance
hierarchy

traits collection

traits traits traits traits traits traits

canonicalString mutableString byteVector  vector sequence sortedSequence
(14) (14) ©) (11) 2 ®)
canonicalString mutableString byteVector  vector sequence sortedSequence

0) ) (O]
Numbers shown in brackets after the object’s name are the number of slots
defined by the object.
Objects which do not have a name are shown as a circle with the number
of slots defined inside.

Figure 18: Result of restructuring collection
objects

6 Summary

The algorithm described in this paper is use-
ful for a variety of applications, in particular



for inheritance hierarchy creation and restructur-
ing [Lieberherr 91, Pun 89, Moore 95]. Creating
inheritance hierarchies manually is difficult. Com-
pared to other algorithms for achieving similar re-
sults, the THI algorithm is simpler and easier to
understand and implement and produces results
which satisfy well justified criteria. An implemen-
tation of the algorithm in Self [Ungar 87| is effi-
cient enough for use on problems of around 500
objects, which is more than adequate for most ap-
plications. A more formal discussion of the com-
plexity of the algorithm is given in Appendix A.

The hierarchies produced by the algorithm may
in some circumstances be unnatural because it
makes no provision for overriding in the inheri-
tance. Used to excess, overriding is a sign of a
badly conceived hierarchy, but in moderation it
can capture the informal idea that something al-
most falls into a particular class (that penguins are
birds, for example, even though they do not fly)
and hence reduce the number of classes in the hier-
archy. Some work has been done on extensions to
the algorithm which can consider hierarchies with
overriding.

The THI algorithm aims to infer hierarchies
which reflect the structure of the objects in the
system. This hierarchy may not be ideal for fu-
ture reuse and may not reflect real world abstrac-
tions, as these are not possible to infer from ob-
jects and their features alone. A programmer may
use information from outside a system when creat-
ing an inheritance hierarchy, in particular domain
knowledge and knowledge gained from experience,
to produce hierarchies which reflect predictions for
future extensions and reuse of a hierarchy. How-
ever, even programmers cannot predict the future
accurately, so hierarchies often require restructur-
ing despite attempts to make them easy to evolve
and reuse.

Related to the inference and restructuring of in-
heritance hierarchies is the problem of extending
an existing hierarchy to include new classes. Tt
is sometimes difficult to find which classes a new
class should inherit from, and it may be that there
are no classes to inherit from without either inher-
iting features which are not wanted, or duplicating
features. One way of approaching this problem is
to create the new class with no inheritance, du-
plicate the features which are required, and then
restructure the hierarchy using the ITHI algorithm.
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A Complexity of the algorithm

If the THI algorithm is to be put to practical use,
its complexity should be estimated. There are
three things which together characterise the size
of the input: the number of objects to be consid-
ered, o; the total number of features they define
(that is, the sum of the number of features each
object contains), f; and the number of distinct
features, d. To see how these affect the running
times, the graph manipulations of the abstract al-
gorithm must be described in more detail.

If the input is presented object by object, an
ObjectVertex can be created for each. For each
feature of the object, the ObjectVertex is added

to a list in the corresponding FeatureVertex: a
new FeatureVertex is created each time a new fea-
ture is encountered. There are f features to be
considered. If the FeatureVertices are arranged as
a balanced tree ordered by feature, the time for
each insertion is O(log f), so the total time taken
to build this structure is O(flogf). It also takes
O(o) time to create the ObjectVertices, and O(d)
time to create the FeatureVertices, but since the
number of features must be at least as large as the
number of objects and the number of distinct fea-
tures, the sorting time dominates this step. The
ObjectVertices will appear in the lists at each Fea-
tureVertex in the order in which they were created.

The mapping graph can be constructed by a
pass over this structure which creates and links
the ClassVertices. For each FeatureVertex, the
set of ObjectVertices associated with that vertex
is compared against those in all previously cre-
ated ClassVertices: if one is found to be equal
then the FeatureVertex is linked to that ClassVer-
tex, while if the new set is equal to none of them
a new ClassVertex is created and labelled with
the new set, and the FeatureVertex linked to that.
(Where only one object has a feature, no ClassVer-
tex needs to be created and the link should be to
the ObjectVertex instead.) Since the ObjectVer-
tices appear in the same order at each FeatureVer-
tex, the set comparison can be done in time pro-
portional to the size of the smaller set by compar-
ing corresponding elements in the two lists. The
worst case here is when the sets are equal. There
are d sets, and if the set sizes are ny, ng,..., ng,
the time taken is EleE]d:i_l_l min(n;, n;). But

¢_yn; = f, the total number of features. This
makes the worst case of the sum the case when
n; = f/d: making one set i larger makes another
set j smaller, and so min(n;, n;) will contribute
less to the overall sum. The worst case time is

thus EleE;l:i_i_lf/d = f(d+1)/2, which is O(fd).

Constructing the InheritanceFEdges between the
ClassVertices is straightforward. There are at
most d ClassVertices (since they partition the dis-
tinct features), and they must be compared pair-
wise to see if one is inherited by a subset of the
objects that inherit the other. The comparison
can be done in time proportional to the size of the
proposed superset by comparing the labels, so the
total time taken is E;‘ZZIEJ‘?:Z-H n; where the n; are
the set sizes as before, and this is readily seen to



be O(fd).

To start the next step, the ClassVertex links
in each ClassVertex should be sorted into some
arbitrary order: this can take O(d.dlogd) time,
since each of the d vertices may have O(d)
links in it. In the algorithm of Section 3 for
pruning the unwanted InheritanceEdges, all (i.e.
O(d)) ClassVertices must be considered as grand-
parents. Each may have InheritanceFEdges to
O(d) ClassVertices and O(o0) ObjectVertices. The
ClassVertices may in turn have O(d) ClassVertices
and O(o) ObjectVertices as children. These sets
must be subtracted from the sets of children of the
grandparent. The ordering of ObjectVertices and
ClassVertices in each ClassVertex allows the com-
mon objects to be marked as deleted in time O(o0)
and the common classes to be marked in O(d),
so the total time is O(o 4 d). Since this must be
done O(d?) times in the worst case, the total time
is O(d*(o+ d)).

Giving an overall complexity means relating o, f
and d. It was remarked above that the number of
features f must be at least as great as the number
of objects 0 and the number of distinct features d,
but there are no other necessary constraints. How-
ever, if each vertex introduces exactly one feature,
then the number of features that an object inher-
its will be given by the depth of the hierarchy. If
the number of children from each ClassVertex in a
hierarchy is fixed at b, then the depth of the hier-
archy will increase with the logarithm (to base b)
of the number of objects. Hence f is O(ologo)
The number of distinct features is the number
of vertices, which is O(o). The complexities of
the steps then become O(o(log 0)?), O(0?log o),
O(o0%log o) and O(0?), which suggests that the
algorithm as a whole should be O(0%). However,
under these assumptions the number of children of
a ClassVertex is constant rather than O(d), and
so the InheritanceEdge removing step is O(0), and
the overall complexity is O(0%log o). In practice,
the number of children might be expected to grow
slowly with the number of objects as new subtrees
are grafted on to some point in the existing hierar-
chy. Experiments with the algorithm on randomly
generated sets of objects suggest slightly better
than O(0%) performance, which suggests that it
should be practical for reasonably large collections
of objects.

The pruning step described in Section 4 and re-

quired to construct hierarchies meeting the mini-
mum inheritance condition requires time exponen-
tial in the number of children at each vertex. Since
in the worst case there may be O(o) children at
a vertex this makes the algorithm as a whole ex-
ponential, and because the algorithm is in effect
solving the minimum cover problem at each vertex
and this is known to be NP-complete [Garey 79],
this is probably a lower bound on the problem.
[Lieberherr 91] show that minimum cover prob-
lems can be encoded as minimal inheritance prob-
lems to show that no alternative pruning strategy
can improve on this in the worst case, and as a
result adopt an algorithm that is not optimal by
their own criteria. However, the arguments above
suggest that even this pruning may well be feasi-
ble in practice if it is deemed necessary after the
arguments to the contrary in Section 4.

B A formal description of the
criteria

To supplement the informal description of the cri-
teria satisfied by the inheritance hierarchies pro-
duced by the IHI algorithm given in Section 2,
we provide here a formal definition. It will be
presented using the syntax of VDM [Jones 90], al-
though a familiarity with standard set notation
should be enough to read it.

We need to define some graph theoretic notions.
Graphs themselves can be modelled as sets of pairs
of nodes, each pair representing an edge.

Graph = (Node x Node)-set

In this model, one graph is a subgraph of another
if its edges are a subset of the other set. We can
define a graph to be a closure if the set of edges is
closed under transitivity.

Closure = Graph

where

inv-Closure(c) &
VYnq, ng, ng: Node -
(n,n2) € c A(ng,n3) € ¢ =
(m,n3) € c

The transitive closure of a graph is the smallest
closure containing that graph.



(*)(g: Graph) c: Closure

post ¢ C cAYc: Closure-g C ¢’ = cC ¢

The reflexive transitive closure adds edges from
each node to itself

(*)g) & gtu{n— n|n:Node}

An inheritance hierarchy is a graph where the
nodes are classes or objects (to be denoted by the
sets C and O respectively) and there are no loops,
in conjunction with a mapping from the nodes to
sets of features (to be denoted by the set F).

Node = C' | O

Hierarchy = Graph x (Node -+ F-set)

where

inv-Hierarchy(i,f) 2
(Vn: Node - (n,n) ¢ it) A
dom f = [J{{m,na} | (n1,n2) € dom i}

The extra criteria for the inheritance hierarchies
produced by the THI algorithm are as follows:

0. They must represent the given object defini-
tions. Object definitions can be modelled as a
map from objects to the sets of features they
contain.

ObjectDef = O = F-set

The object definition represented by a hierar-
chy is found by associating with each object
all the features from all its ancestors in the
hierarchy (including itself).

objects : Hierarchy — ObjectDef

objects(i,f) &

{o— U{f(n)| n: Node - (n,0) € i*} |
0:0-0¢€domf}

1. Features appear at a single node

unique-features(i,f) &
Vfsi,fss € rngf -
fainfss 2{} = fs1=Js

2. The number of internal nodes must be as
small as possible for the set of objects rep-
resented.
minimal(i,f) &

Y(¢', f'): Hierarchy -
objects(i, f) = objects(i', f') =
card ' < card f

3. The hierarchy should contain all inheritance
consistent with the objects.

all_inheritance(i,f) &
Vn1, ng: Node -
(Yo: O -
(ng,0) € it = (m,0)€ it
) = (m,ng) €t

4. Links implied by transitivity should not be
explicit in the graph

no-transitivity(i, f) £
V(ni,ng) € i -
Ans: Node-(nq,n3) € iA(n3, ng) € 1

5. Objects are leaves

objects_are_leaves(i,f) &

Ao: O, n: Node - (o,n) € i

We can justify the claim that these conditions
define the hierarchy for a given set of objects
uniquely by considering first the nodes and then
the edges of the graph.

The set of nodes must provide all the features
that the objects need, Further, since features oc-
cur in at most one node, each node must be inher-
ited by all the objects requiring any of its features.
This means that nodes can contain more than one
feature only if these features appear in all the ob-
jects in which any of them appear. Unwanted fea-
tures must be in uninherited nodes, and if the
number of nodes is minimal, there will be none
of these. The nodes thus partition the features.
Minimality also requires that features which do al-
ways appear together in the objects share a node:
otherwise, the nodes which contain them can be
merged. The partition (and hence the number of
nodes and the features associated with them) is
thus uniquely defined.



Turning to inheritance, it is clear that objects
can only inherit from nodes which provide the
features they need. The third condition requires
that the transitive closure of the inheritance is the
largest graph consistent with this, and hence de-
fines it uniquely. In any transitive closure graph,
we can determine which edges are replaceable by
paths, so the smallest graph generating that tran-
sitive closure is also uniquely defined.

The effect of the fifth condition is to add an
extra feature to each object, of “being itself”. Its
presence or absence does not affect the uniqueness
of the result, but does affect the minimum number
of nodes required in the inheritance graph.

C A formal definition of the al-
gorithm

In giving a formal version of the algorithm de-
scribed in English and diagrams above, we shall
assume that we start with the objects represented
as a value of the type ObjectDef above.

The first step of the algorithm transforms object
definitions to grouping graphs, where a grouping
graph is a relation between features and objects,
which we can model as a set of (feature,object)
pairs.

GroupingGraph = (F x O)-set

The transformation associates each object with
the features it contains.

stepy : ObjectDef — GroupingGraph
stepr(od) &

{(f.0)]
fiF,0:0-0€domodAf € od(o)}

A mapping graph is another way of looking at the
same information: it associates features with the
sets of objects which contain them. Sets contain-
ing more than one object correspond to the classes
of the informal description.

MappingGraph = F -2 O-set

The second step just creates this new representa-
tion from the old one:

steps : GroupingGraph — MappingGraph

stepy(g9g9) 2
{f—={olo:0-(f,0)cgg}|f:F}

The object sets of the mapping graph form the
nodes of the inheritance graph, and the edges are
represented as pairs as above.

InheritanceGraph = (O-set x O-set)-set

The third step of the algorithm constructs an in-
heritance graph from a mapping graph by putting
all possible inheritance edges into the graph: that
is, those linking nodes to nodes which represent
any proper subset of their objects.

steps : MappingGraph — InheritanceGraph

steps(mg) &
let nodes = rng mg U {{o} ]| 0: O} in
{(v1,v2) | v1,v2 € nodes A vy C vy}

(We add a node corresponding to each object so
that the objects will be represented by terminal
nodes of the final graph even if they have no
unique features.)

The final step prunes the inheritance graph of
those edges implied by transitivity: since these
edges are all in the graph just constructed, they
are easy to find.

stepy : InheritanceGraph —
Inheritance Graph

depi(tg) A
{(v1, vo)
| (vi,v2) € tg A
—3duvg: O-set-(v1, v3) € tgA(vs, v2) € lg

}

Our representation of the inheritance graph lacks
the information on which features are associated
with each vertex of the inheritance graph, which
would be needed for defining the classes. This
can easily be recovered by inverting the mapping
graph.

invert : MappingGraph —
(O-set = F-set)

invert(mg) &

{os —{f | f € dom mgAmg(f) = os} |
os € rngmg U {{o} | 0: O}}



